Financial Quants and Engineers Club

High-Frequency Trading with Fractional Brownian Motion

Presented By
Arthur F, Matt C, Amber T

12/12/2025

Theory

Brownian Motion...

® Represents that price changes are unpredictable

e Returns are completely independent of each other and
no memory

® Thus no predictions and money can be made from
previous data

e Basically a random walk

Theory

Fractional Brownian Motion has memory

Increments of the Brownian Motion are no longer independent
This is accomplished mathematically through several steps
The most important is the inclusion of the Hurst exponent
H > 0.5 implies persistence, h < 0.5 implies mean reversion

Grabbing Hourly Data

The Hurst Exponent relies on substantial amounts of data in order to
function. This means their is a necessity to grab substantial amounts of
hourly data quickly and efficiently.

WRDS data has a system called TAQ (Trade and Quote, or something
similar) which provides ALL orders, but this would require a bunch of

data normalization.

Solution: Web Scraping!

Scraping Hourly Data L oW

Pretend to be Some ;
Send Cookies Make Two Requests

Browser/Device

Cast into the Void Receive Data

SC ra pi ng Data Live def _is_this_consent_url(self, response_url: str) —> bool:

Check if given response_url is consent page

Args:
response_url (str) : response.url

Cookie_db_proxy = _peewee.Proxy()
class ISODateTimeField(_peewee.DateTimeField): I

True : This is cookie-consent page
False : This is not cookie-consent page

try:
return urlsplit(response_url).hostname and urlsplit(

p - response_url
def db_value(se[f, value).) .hostname.endswith("consent.yahoo.com")
if value and isinstance(value, _dt.datetime): except Exception:
N t Fal
return value.isoformat() ket
return super().db_value(value) def _accept_consent_form(
self, consent_resp: requests.Response, timeout: int
def python_value(self, value):) =5 s EnEeE
if value and isinstance(value, str) and 'T' in value:
return _dt.datetime.fromisoformat(value)
return super().python_value(value) Ards:
class _CookieSchema(_peewee.Model):
strategy = _peewee.CharField(primary_key=True)
_ @classmethod
fetch_date = ISODateTimeField(default=_dt.datetime.now) def _initialise(cls, cache dir=None):

if cache_dir is not None:
cls._cache_dir = cache_dir

Click 'Accept all' to cookie-consent form and return response object.

cookie_bytes = _peewee. BlobField() 0L m;t _os.path.isdir(cls._cache_dir):
ry:
_os.makedirs(cls._cache_dir)
except OSError as err:
raise _ISINCacheException(f"Error creating ISINCache folder: '{cls._cache_dir}' reason: {err}")
elif not (_os.access(cls._cache_dir, _o0s.R_OK) and _os.access(cls._cache_dir, _o0s.W_0K)):
raise _ISINCacheException(f"Cannot read and write in ISINCache folder: '{cls._cache_dir}'")

cls._db = _peewee.SqliteDatabase(
_os.path.join(cls._cache_dir, 'isin-tkr.db'),
pragmas={'journal_mode': 'wal', 'cache_size': -64}

Hurst Equation

Math to program

For each such time series of length n, X = X, X5,..., X, , the rescaled range is calculated as follows:[®I["]

1. Calculate the mean;

def calculate_hurst_exponent(data: pd.DataFrame, window_size: int) -> float:
1 n . _ 5 : 3 5
m— = ZXZ) windows = split_windows(data, window_size)
n hurst_exponents = [1]

2. Create a mean-adjusted series;

Y=X,-m fort=12,...,n. for window in windows:

3. Calculate the cumulative deviate series Z;
: window = window.copy()
Zt:ZYi fort=1,2,...,n.

i=1 window['Log Return'] = np.log(window['Close'] / window['Close']l.shift(1))
4. Compute the range R; window = window.dropna(subset=['Log Return'])

R(n) = Z1,Za, ..., Zn) — min(Zy, Zo, . .., Zn). ;
(n) = max(Zy, 2y, ..., Zp) — min(Z1, 2,) mean = window['Log Return'].mean()

5. Compute the standard deviation .S

1 window['Log Return'] = window['Log Return'] - mean
/ Z 2
=1 window['Cumulative Deviate']l = window['Log Return'].cumsum()

6. Calculate the rescaled range R(n)/S(n) and average over all the partial time ser|

range = window['Cumulative Deviate'l.max() — window['Cumulative Deviate'].min()

std = window['Log Return'].std()
m
i
hurst_exponents.append(range / std)

return np.mean(hurst_exponents)

Hurst Equation

How much of a random walk is the market?
data = grab_data("ORCL", "2025-01-01", "2025-04-01")[['Date', 'Close'l]
window_sizes = [50, 100, 150, 200, 250]
print(calculate_hurst_fitted_exponent(data, window_sizes))
rng = np.random.default_rng()
random_integer = rng.integers(low=-1, high=1, size=10000)
init = 100000
data = [init]
for i in random_integer:

oy The market implements a
init —= 1 random walk better than an

else:

T e actual random walk generator
data.append(init)

data = pd.DataFrame({'Close': data})

print(calculate_hurst_fitted_exponent(data, window_sizes))

(venv) xct@Arthurs-MacBook-Pro-2 High-Frequency-Trading-with-Fractional-Brownian-Motion % pyt
hon -m src.grab_data.hurst_calculator

0.49813332838667146

0.5261702366763307

C++

Hurst Equation is Slow

We attempted to create a C++ piece of
code to more quickly perform calculations
and data reads

Problem: Not all of us are super familiar with
C++

Any other data strcuture

Solution: Pybind! Combine the two languages.

Pybind is a pain, Pandas is too good

Hurst Equation is Slow

from ..historicaldata impor (Property) history: DataFrame

import matplotlib.pyplot as Returns the historical data as a pandas DataFrame.

def grab_data(ticker: str, A Returns: ‘rame:
historical data = Histo pd.DataFrame: The historical stock data.

return historical_data.history

5 :setwﬂ@)

Also Pybind was difficult to

initialize and use consistently

10

Python got hands tho ngl

Sponsor this project Python is not that Slow

ﬂ python Python

® Python is mostly just C with essentially wrappers

® This means that actual time gains are more
negligible than you may expect

e Cand C++ have a bunch of control and good
libraries which is why they’re used, not
necessarily time boost

Packages

No p:
Used by 629k
LQBE * VL@ -

Contributors 3,307
@CEPOA@E Terrifying

Languages

s O tes ago @ 129,498 Commits

HTML 0.3% ® JavaScript 0.1%
® Other 0.6%

AAPL - Action Values Over Time

‘, FQE

Backtests

Action Value
° °
ks o

o
~

2024-01 2024-03 2024-05

°
°

2024-07 X 2024-09 2024-11 2025-01
AAPL - Portfolio Value Over Time

1850

ot
1
S
3

Portfolio Value ($)
<]
o
s

-
9
=3
S

1650

2024-01 2024-03 2024-05 2024-09 2024-11 2025-01

2024-07)
AAPL - Stock Price Over Time

260

240

N
N
S

Stock Price ($)
N
S
8

=
@
3

=
o

2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
Date

return _methods._mean(a, axis=axis, dtype=dtype,

0 .
Don’t mind the /Users/xct/dev_projects/brownian_motion/High-Frequency-Trading-with-Fractional-Brownian-Motio

. n/venv/1lib/python3.13/site-packages/numpy/_core/_methods.py:144: RuntimeWarning: invalid valu
Panda warnings Imao e encountered in scalar divide

ret = ret.dtype.type(ret / rcount)
{'initial_budget': np.float64(1861.8989562988281), 'final_value': np.float64(1789.51180262756
72), 'return': np.float64(-0.03887813214910197), 'time_seconds': 37.44910788536072}
Backtest completed in 37.45 seconds

R W T N . [. PG R v v e | |

7 ARPORGUS NN IV W FPOVIpR V PR, DRy DR . YRORRL. W I LI O e

Backtests FQE

ORCL - Action Values Over Time

I ‘ w ‘ ‘ ‘ ‘ l ‘
: “ ‘ ‘ ‘ i ‘
" ‘ ‘ ‘ ‘ ‘
2222222222 -03 2024-05 2024-07 . 2024-11 2025-01
ORCL - Portfolio Value Over Time
z
s
£ 1100
£
&
1050
00
2222222222222222222222 -07 . 2024-09 2024-11 2025-01
ORCL - Stock Price Over Time
180
8
&
g
[
120

222

ret = ret.dtype.type(ret / rcount)

{'initial_budget': np.float64(1033.8999938964844), 'final_value': np.float64(1211.24379018402
46), 'return': np.float64(0.17152896540716703), 'time_seconds': 36.92596888542175}
Backtest completed in 36.93 seconds

Questions?

